Классы прочности

Содержание
  1. Особенности производства болтов высокой прочности
  2. Стали для изготовления болтов
  3. Типы проводимых испытаний
  4. Маркировка класса прочности болтов
  5. 2. Нанесение обозначений классов прочности на крепёжные изделия
  6. 2.1. Маркировка болтов и винтов
  7. Маркировка болтов из нержавеющей стали
  8. 2.2. Маркировка шпилек
  9. 2.3. Маркировка гаек
  10. Таблица классов прочности и группы качества по хладостойкости проката строительных сталей
  11. Классы прочности и марки сталей для гаек нормальной высоты, гаек высоких и гаек особо высоких
  12. Сопрягаемые болты:
  13. Прочность шайб
  14. Предел прочности
  15. Виды пределов прочности
  16. Испытание материала на разрыв
  17. Испытание металлов на разрыв
  18. Испытания арматуры на разрыв
  19. Предел прочности при растяжении
  20. Стандарты, технические требования и материалы
  21. Классы прочности болтов ГОСТ 7796-70
  22. Как производится испытание на прочность
  23. Легирующие добавки в составе сплавов
  24. Предел текучести и временное сопротивление
  25. Таблица значений прочности на разрыв материалов и веществ
  26. Усталость стали
  27. Пути увеличения прочностных характеристик
  28. Общие сведения о сталях

Особенности производства болтов высокой прочности

Класс определяют не только по марке стали, но и по методу, примененного для их производства. Так, болты высокого класса изготавливают на высадочных автоматах (холодных или горячих). Резьбу накатывают с применением специальной технологической оснастки. Затем их отправляют на термообработку. После нанесения покрытия, защищающие болты от коррозии и старения, они готовы к отправке потребителям.

Крепеж отправляют потребителю в ящиках определенного веса. В некоторых случаях на их поверхность наносят слой масла, который обеспечивает длительное хранение метизных изделий.

Оборудование, применяемое для производства болтов высокого класса, может выпускать от 100 до 200 изделий, в минуту. Для изготовления применяют проволочный прокат, полученный из низкоуглеродистой или легированной стали.

Стали для изготовления болтов

Для производства применяют несколько марок стали. Распространенными считают – 10КП, 20КП, 10, 20, 35, 20Г2Р, 65Г, 40Х. После выполнения термообработки, болты, получают заданные параметры, определенные в соответствующих нормативных актах. Термическую обработку осуществляют в электрических печах с применением защитной среды. Она препятствует исходу углерода из стали.

Болты высокой прочности могут быть произведены из разных марок и будут получены изделия, которые будут относиться к различным группам прочности. Варьируя разнообразные режимы термообработки, есть возможность получения изделий с разными параметрами прочности.

Как пример можно рассмотреть применение стали 35 для производства болтов, относящихся к разным группам прочности:

  • 6 — болты выполняют на станках токарно-фрезерной группы;
  • 6 и 6.8 — крепеж производят на высадочном прессовом оборудовании;
  • 8 — этот класс получат после прохождения термообработки.

Болты высокой прочности, включают в себя и специализированные метизы, нашедшие применения строго в определенных областях. Требования к продукции определяют в отраслевых документах.

Крепежные изделия, применяемые в авиастроении, производят на основании так называемых нормалей (отраслевых стандартов). Эти метизы отличает повышенная прочность, малый вес и точность. Применение этих болтов и гаек обеспечивает безопасность эксплуатации техники. Для их производства применяют стали, относящиеся к углеродистым или легированным. Готовые изделия покрывают усиленным слоем антикоррозийного покрытия.

Продукция, применяемая при возведении мостовых сооружений и их конструктивных элементов, нормируется ГОСТ Р 52644-2006.

Болты особой прочности, производят в разном исполнении. Различают несколько вариантов. Болты категории «У» допускается эксплуатировать работать при – 40 ºC. Изделие типа «ХЛ» эксплуатируются в диапазоне от – 40 до – 65ºC.

Для изготовления метизов с высокой прочностью, применяют следующие марки сплавов: 30Х3МФ, 30Х2АФ, 30Х2НМФА.

Типы проводимых испытаний

Для подтверждения качества продукции заводы производители проводят ряд испытаний. Перечень и методики испытаний определены в ГОСТ Р 52627-2006. Испытания могут быть осуществлены в заводской или любой другой лаборатории, прошедшей соответствующую аттестацию в центре Росстандарта. Ниже приведен краткий перечень тестов:

  • растяжение;
  • кручение;
  • твердость;

По результатам, проводимых испытаний будут определены свойства продукции, в частности – предел прочности, предел текучести и ряд других.

Маркировка класса прочности болтов

Долгое время в нашей стране все метизы производились по ГОСТу 22353-77, но сегодня его правила больше не актуальны. Все технические характеристики болтов соответствуют ГОСТу Р 52644-2006. Однако в закромах дедушкиных балконов, а также на складах и в мастерских по-прежнему встречаются болты со старой маркировкой. И встречаются порой в промышленных масштабах. Поэтому скажем пару слов о советском ГОСТе и о том, что значила старая маркировка.

Она представлена двумя частями: буквы в верхней части и цифры внизу. Буквами обозначено клеймо завода, на которым был изготовлен метиз, например, WT, Ч, L, OC, D и другие. Следом обычно идут цифры, отражающие временное сопротивление метиза в МПа, поделенное на десять. Дальше снова буквы, по которым мы можем определить уровень сопротивления крепежа агрессивным условиям окружающей среды. Например, ХЛ будет обозначать, что болт предназначен для холодных климатических условий. Цифры внизу обозначают номер плавки.

Иногда на болтах можно встретить стрелку, указывающую в направлении «против часовой». Это значит, что у вас в руках метиз с левой резьбой. Если резьба правая, то обозначение просто отсутствует.

2. Нанесение обозначений классов прочности на крепёжные изделия

Маркировке подлежат:
  • Болты с шестигранной головкой;
  • Винты с цилиндрической головкой и внутренним шестигранником;
  • Шпильки
  • Гайки

2.1. Маркировка болтов и винтов

Чаще всего болты маркируются на торцевой поверхности головки, под клеймом завода-изготовителя. Цифры могут быть выпуклыми либо углублёнными. Иногда точку между цифрами не ставят, например 10.9 пишется как 109. Если обозначение подчёркнуто (вот так: 10.9 или 109 ), это означает, что болт изготовлен из низкоуглеродистой мартенситной стали. Некоторые заводы маркируют болты специальными символами – точкой и штрихом (циферблатная маркировка). Точка служит для ориентира и располагается на «12 часов», а положение одинарного или двойного штриха указывает на класс прочности: Если маркировка отсутствует, то болт имеет класс прочности 6.8 или ниже.

Маркировка болтов из нержавеющей стали

Среди обозначений на болте, сделанном из нержавеющей стали, на первое место ставят маркировку самой стали, А2 или А4. Следом идет предел прочности, например, 50, 60, 70 и т. д. Эти числа также обозначают одну десятую от предела прочности углеродистой стали, измеряемых в МПа.

2.2. Маркировка шпилек

Как правило, шпильки маркируются на торце специальным углублённым знаком, который соответствует классу прочности:
Знак +
Класс прочности 8.8 9.8 10.9 12.9

2.3. Маркировка гаек

На гайки обычно знаки маркировки наносятся на торец аналогично болтам и винтам. Следует иметь в виду, что данная статья имеет ознакомительный характер и не является официальным информационным документом. Более подробную и точную информацию можно получить в следующих стандартах:
ГОСТ 1759.0-87 Болты, винты, шпильки и гайки. Технические условия.
ГОСТ 1759.4-87 Болты, винты и шпильки. Механические свойства и методы испытания.
ГОСТ Р 52628-2006 Гайки. Механические свойства и методы испытаний.

Таблица классов прочности и группы качества по хладостойкости проката строительных сталей

Условный
класс
прочности
Прежнее
обозначение
Механические свойства
при растяжении
Температура, при которой гарантируется ударная вязкость KCU не менее 0,3 М дж/м2, для групп качества по хладостойкости
предел текучести,
МПа
временное сопротивление,
МПа
относительное удлинение,
%
не менее I II III
С225 С38/23 225 375 25 Не гарантируется –20
С285
С325
С390
С440
С590
С735
С44/29
С46/33
С52/40
С60/45
С70/60
С85/75
285
325
390
440
590
735
430
450
510
590
685
830
21
21
19
16
12
10





–40
–40
–40
–40
–40
–40
–70
–70
–70
–70
–70
–70

Обычно первому классу прочности соответствует прокат углеродистой стали обыкновенного качества в горячекатаном состоянии, последующим классам прочности от второго до пятого – прокат низколегированной стали в горячекатаном или нормализованном состоянии, шестому и седьмому классам прочности – прокат экономно легированной стали, поставляемой, как правило, в термоулучшенном состоянии. Однако возможно также получение проката второго и третьего классов путем термического и термомеханического упрочнения или контролируемой прокатки.

Наряду с требованием гарантированной прочности к строительным сталям предъявляется требование гарантированного сопротивления хрупкому разрушению (хладостойкости). Оно регламентируется показателями ударной вязкости при отрицательной температуре и при температуре плюс 20 °С после механического старения. Все строительные стали по хладостойкости условно можно разделить на три группы:

  • I – без гарантированной хладостойкости;
  • II – с гарантированной хладостойкостью для металлоконструкций, эксплуатируемых в обычных температурных условиях (расчетная температура не ниже минус 40 °С);
  • III – с гарантированной хладостойкостью, но для конструкций, эксплуатируемых при расчетной температуре ниже минус 40 °С («северное исполнение»).

В таблице приведена температура испытаний, при которой должна быть гарантирована ударная вязкость стали каждой группы качества по хладостойкости. Указанным группам соответствуют определенные марки стали и категории качества, предусмотренные стандартами на сталь. Так, по ГОСТ 27772-88* группе I соответствует сталь С235, группе II – стали С255 и С285, стали С345 и С375 категории 1 и 3, сталь С590, группе III – стали С345 и С375 категории 2 и 4, сталь С590К.

Все температуры испытаний в таблице (как и в ГОСТ 27772-88*) указаны для условий определения ударной вязкости KCU на стандартных образцах с полукруглым надрезом (радиус 1 мм) типа I по ГОСТ 9454-78*, вырезаемых из листов и широкой полосы в направлении поперек направления прокатки, а из фасонных профилей и сортовой стали – вдоль направления прокатки. Вместе с тем в последнее время остро ставится вопрос о переходе при аттестации стали к более жестким условиям определения ударной вязкости KCV на образцах с острым треугольным надрезом (радиус 0,25 мм) типа II по ГОСТ 9454-78*. Использование этих образцов соответствует международной практике.

Согласно имеющимся методическим исследованиям, единый переход от норм KCU к нормам KCV, общий для всех металлоизделий, отсутствует и необходимо учитывать индивидуальные особенности, включающие в себя как вид металлопроката, так и качество стали. Все же общим для такого перехода является необходимость повышения температуры испытания, которая для металлопроката строительной стали эквивалентной хладостойкости при прочих равных условиях (то же направление вырезки образцов, та же метрологически обоснованная величина ударной вязкости 0,3 мДж/м2) составляет примерно 40 °С. Таким образом нормам KCU, при минус 40 °С и минус 70 °С будут близко соответствовать нормы KCV при 0 °С и минус 30 °С.

Под влиянием колебания содержания элементов в интервале марочного состава, неоднородности слитка и условий прокатки прочностные характеристики стали каждой марки варьируются в широких пределах. Стремление более полно использовать фактическую прочность проката в конструкциях привело к идее селективного разделения на металлургических заводах всей совокупности металлопродукции данной марки на отдельные группы прочности, отличающиеся гарантируемыми значениями предела текучести и временного сопротивления разрыву.

В нашей стране такое разделение на группы прочности осуществлено для строительных углеродистых и низколегированных марок стали первого, второго и третьего классов прочности [26] и нашло отражение в ТУ 14-1-3023-80 и ГОСТ 27772-88*. По этим нормам каждая марка углеродистой и низколегированной стали разделена на две группы прочности, причем для второй группы гарантируемые значения предела текучести и временного сопротивления на 10-40 МПа выше, чем для первой. Высокая надежность соблюдения норм прочности и пластичности (с вероятностью не ниже 95 %) обеспечивается специальными статистическими процедурами приемки и контроля. Металлопрокат, поставляемый по этим нормам, получил название сталь с гарантированным уровнем механических свойств, дифференцированным по группам прочности.

Классы прочности и марки сталей для гаек нормальной высоты, гаек высоких и гаек особо высоких

Класс прочности Марка стали Граница прочности, МПа
Твердость по Бринеллю, HB
4 Ст3кп, Ст3сп, Ст.5, Ст.5кп, Ст.20 510 112…288
5 Ст.10, Ст.10кп, Ст.20, Ст.20кп 520…630 124…288
6 Ст.10, Ст.10кп, Ст.20, Ст.20кп, Ст.35, ст.45, ст.40Х 600…720 138…288
8 Ст.35, Ст.45, Ст.20Г2Р, Ст.40Х 800…920 162…288
9 Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х 1040…1060 180…288
10 Ст.35Х, Ст.38ХА, Ст.45, Ст.40Х, Ст.30ХГСА, Ст.40ХНМА 900…920 260…335
12 Ст.30ХГСА, Ст.40ХНМА 1150…1200 280…335

Правило подбора гаек к болтам заключается в сохранении целостности резьбы гайки, навинченной на болт, при приложении пробной испытательной нагрузки — попросту говоря, при испытаниях гайку не должно «сорвать» от испытательной нагрузки для выбранного болта.

При подборе класс прочности болтов и гайка класс прочности, сопрягаемых в резьбовом соединении, можно пользоваться следующей таблицей согласно ГОСТ 1759.4-87:

Сопрягаемые болты:

Гайка класс прочности Класс прочности Диаметр резьбы
4 3.6; 4.6; 4.8 до М16
5 3.6; 4.6; 4,8 свыше M16
5 5.6; 5.8 до М48
6 4.6; 4.8; 5.6; 5.8; 6.6; 6.8 до М48
8 8.8 до М48
9 8.8 от М16 до М48
9 9.8 до M16
10 10.9 до М48
12 12.9 до М48

Как правило, гайки высших классов прочности могут заменить гайки низших классов прочности. Такая замена рекомендуется для соединений «болт + гайка», напряжение в которых будет выше предела текучести, или напряжения от пробной нагрузки болта.

Прочность шайб

Прочность шайб, в отличие от болтов и гаек, которые имеют классы прочности обозначаемые количественно цифрами, исходя из показателей прочности на разрыв и пластичности, шайбы несут нагрузки на сжатие, кручение, срез и, в основном, призваны распределить нагрузку в болтовом соединении на большую площадь. В таком случае для прочность шайб определяющим параметром является поверхностная твёрдость, и ко всем видам шайб предъявляются требования по твердости. Если речь идёт о классе прочность шайб, то подразумевается именно твердость шайб.

По аналогии с болтами, винтами и гайками многие называют твердость у шайб их классом прочности.
Класс прочности (твердость) шайб может измеряться и обозначаться в различных единицах — в зависимости от метода измерения твёрдости: методы измерения бывают по Виккерсу, по Роквеллу и по Бринеллю. Размеры, наличие защитного покрытия и в обязательном порядке твердость определяют сферу применения шайб в различных условиях работы.

Наиболее распространён метод Виккерса — шайбы могут иметь твёрдость по Виккерсу от 100 единиц до 400, и обозначаются HV100, HV200, HV300 и т.д. По Роквеллу твёрдость обозначается HRC, по Бринеллю НВ.

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Испытание материала на разрыв

Испытания на разрыв лаборатория проводит как на металлических, так и на органических хрупких и пластичных материалах, используя образцы различной формы, а именно:

  • плоские;
  • цилиндрические;
  • длинные;
  • короткие.

При испытании на разрыв образец помещают в специальные разрывные машины, где его растягивают до разрушения, то есть разрыва. В момент испытания скорость не изменяется, при этом определяется:

  • текучесть;
  • упругость;
  • пропорциональность;
  • относительное удлинение;
  • временное сопротивление к разрыву, то есть нагрузку разрушения.

Испытание металлов на разрыв

Испытание металла необходимо для установления прочности, что является особо важным при дальнейшем его использовании. Данное испытание проводится на специализированных машинах, где образец подвергается растягивающим усилиям до разрушения. Прибор, установленный на машине, определяет масштаб растяжения в виде диаграммы. Чем пластичнее металл, тем дольше его сопротивление, и наоборот.

Существует два вида испытаний на разрыв:

Статическое. В момент статического растяжения происходит постоянная или медленно возрастающая нагрузка.

Динамическое. Данное испытание проводится путем быстрой изменяющейся нагрузки, определяя ударную вязкость.

При ускоренном испытании определяются повышенные характеристики прочности и пониженные характеристики пластичности, а при уменьшенном времени эти характеристики проявляются более отчетливо. В момент деформации материал всегда нагревается, а при быстрых испытаниях образцы нагревается более заметно.

 

Испытания арматуры на разрыв

Особо важным показателем является установление предела прочности арматуры, так как в настоящее время идет активное ее использование в строительстве. Арматура является материалом для укрепления сооружений, принимая на себя различные нагрузки.

Испытание арматуры осуществляется на специализированном станке (разрывная испытательная машина), где определяется степень растяжения.

Испытание на разрыв ГОСТ 12004-81 проводится при температуре 20°С, с использованием образца арматуры круглой или периодического профиля. Перед испытанием образец подготавливают. Длину арматуры выбирают по рабочей длине образца и конструкции захвата испытательной машины.

Определение рабочей длины образца:

  • если номинальный диаметр образца до 20 мм, то длина не менее 200 мм;
  • если номинальный диаметр образца свыше 20 мм, то длина не менее 10d;
  • длина арматурных канатов не менее 350 мм всех диаметров.

Процесс растяжения арматуры происходит путем ее установления в машину, зафиксировав с помощью зажимного механизма. Далее происходит растяжение при постепенно увеличивающейся нагрузке. Данное испытание проводится до разрыва арматуры.

По итогам проведенных испытаний арматуры, определяют различные свойства, а именно:

  • удлинение при высокой нагрузке;
  • удлинение после разрыва;
  • равномерное удлинение после разрыва;
  • сужение после разрыва;
  • временное сопротивление;
  • предел текучести;
  • предел текучести и упругости;
  • модуль упругости.

Существует большое количество материалов, которые при определении свойств имеют различные показатели. Так же существуют хрупкие материалы, которые быстро разрушаются без какой-либо деформации.

В основном испытание на разрыв одного пластичного образца продолжается в течение нескольких десятков минут, поскольку соответствующая скорость деформирования оговорена стандартом.

Мы предлагаем провести испытание на разрыв, а именно:

  • испытания арматуры на разрыв;
  • испытание металлов на разрыв;
  • испытание материала на разрыв;
  • испытание болта на разрыв;
  • испытание стали на разрыв;
  • испытание сварного шва на разрыв;
  • испытание сварных соединений на разрыв.
 

Срок зависит от степени загруженности лаборатории и времени проведения испытаний, а так же от вида самого материала и подготовки оборудования.

Термин прочность на разрыв Термин на английском tensile strength Синонимы Аббревиатуры Связанные термины Определение сопротивление, которое материал способен оказать растягивающему напряжению. Описание

Прочность на разрыв определяется как наименьшее напряжение растяжения (сила, деленная на единицу площади поперечного сечения), требуемое, чтобы разрушить образец. Иногда определяют также эффективную прочность материала: это наибольшая длина призматического образца (проволоки, волокна), закреплённого в верхней точке и способного не разорваться под собственным весом. Прочность на разрыв измеряется в паскалях, эффективная прочность – в метрах.Пересчёт эффективной прочности в прочность на разрыв осуществляется по формуле:

где ?UTS – прочность на разрыв, LUTS – эффективная прочность, ? – плотность материала, g – ускорение свободного падения.

Предел прочности при растяжении

Предел прочности при растяжении (сопротивление на разрыв) или временное сопротивление разрыву σв – механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности при растяжении измеряется:

1 кгс/мм 2 = 10 -6 кгс/м 2 = 9,8·10 6 Н/м 2 = 9,8·10 7 дин/см 2 = 9,81·10 6 Па = 9,81 МПа

Стандарты, технические требования и материалы

ГОСТ 7796-70 распространяется на болты с шестигранной уменьшенной головкой класса прочности В с диаметром от 8 до 48 мм.

Длина от 10 до 300 мм.

Резьба по ГОСТ 24705. Сбег и недорез резьбы по ГОСТ 27148.

Концы болтов по ГОСТ 12414. Радиус под головкой по ГОСТ 24670.

Не установленные настоящим стандартом допуски размеров, отклонений формы и расположения поверхностей и методы контроля по ГОСТ 1759.1.

Допустимые дефекты поверхности болтов и методы контроля по ГОСТ 1759.2.

Технические требования по ГОСТ 1759.0.

Болты оцинкованные ГОСТ 7796-70 используются при соединении и креплении металлоконструкций и дорожных ограждений.

ГОСТ 7796-70 регламентирует 5 исполнений болтов.

S — размер «под ключ»;

е — диаметр описанной окружности;

К/К1 — высота головки болта;

d1 — диаметр стержня;

L/L1 — длина болта;

b — длина резьбы;

d — номинальный диаметр резьбы

Классы прочности болтов ГОСТ 7796-70

Класс прочности характеризует предел прочности и предел текучести изделия. Класс прочности болта указывается на его головке.

Класс прочности

Характеристика

4.8, 5.8

Изготавливаются из стали 10, 20.

Имеют относительно невысокую прочность на разрыв. Болты класса прочности 5.8 выдерживают нагрузки на 20% больше, чем болты класса прочности 4.8.

Широко применяются во всех отраслях народного хозяйства для малонагруженных соединений

8.8

Изготавливаются из стали 35, 20Г2Р с последующей закалкой.

Выдерживают в два раза большее разрушающее воздействие по сравнению с классом прочности 4.8.

Рекомендуем применять в ответственных конструкциях и механизмах

10.9, 12.9

Изготавливаются только из стали 20Г2Р или 40Х с последующей закалкой.

Выдерживают разрушающее воздействие в 2.7 раза больше по сравнению с классом прочности 4.8.

Высокий класс прочности позволяет применять крепежные изделия меньшего размера при тех же нагрузках; сократить металлоемкость крепежа и снизить цену на 30–40%.

Незаменимы в механизмах, требующих частой сборки-разборки, грузоподъемных машинах и ответственных конструкциях

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Таблица значений прочности на разрыв материалов и веществ

Материал, вещество

Прочность на разрыв 109 дин/см2.

Материал, вещество

Прочность на разрыв 109 дин/см2.

Алюминий (литой)

0,9-1,0

Кожаный ремень

0,3-0,5

Алюминий (листовой)

0,9-1,5

Пеньковая веревка

0,6-1,0

Кальций

0,42-0,6

Кетгут

4,2

Кобальт

2,6-7,5

Паутина

1,8

Магний (литой)

0,6-0,8

Шелковая нить

2,6

Магний (прессованный)

1,7-1,9

Кварцевая нить

Около 10

Медь (литая)

1,2-1,7

Пластмассы термопластичные

0,28-0,70

Медь (листовая)

2,0-4,0

Термореактивные

0,42-1,5

Чугун

1,0-2,3

Проволоки

Железо сварочное

2,9-4,5

Алюминий

2,0-4,5

Сталь литая

4,0-6,0

Латунь

3,5-5,5

Сталь мягкая (0,2%С)

4,3-4,9

Медь (холоднотянутая)

4,0-4,6

Сталь рессорная

7,0-7,7

Медь (отожженная)

2,8-3,1

Сталь отпущенная

9,3-10,8

Золото

2,0-2,5

Сталь никелевая, 5% Ni

8,0-10,0

Железо (на древесном угле)

Сталь хромоникелевая

10-15

Железо холоднотянутое

5,4-6,2

Свинец (литой)

0,12-0,17

Железо отожженное

4,6

Олово (литое)

0,2-0,35

Сталь поделочная

Около 11

Цинк (листовой)

1,1-1,5

Сталь отпущенная

15,5

Латунь (66% Cu) литая

1,5-1,9

Сталь холоднотянутая

18,6-23,3

Латунь (34% Cu) листовая

2,3-2,7

Никель

5,0-9,0

Бронза фосфористая (литая)

1,8-2,8

Платина

3,3-3,7

Пушечный металл (90% Cu, 10% Sn)

1,9-2,6

Серебро

2,9

Мягкий припой

0,55-0,75

Тантал

8-11

Неметаллы:

Бронза фосфористая

6,9-10,8

Стекло

0,3-0,9

Нейзильбер

4,6

Дерево1

Дюралюминий

4,0-5,5

Ясень, бук, дуб, тик, красное дерево

0,6-1,1

Вольфрам

15-35

Пихта, смолистая сосна

0,4-0,8

Палладий

3,5-4,5

Красные или белые еловые доски

0,3-0,7

Молибден

11-30

Белая или желтая сосна

0,2-0,5

Pt+10% Rh

6,3

Цирконий отожженный

2,6-3,9

Цирконий холоднотянутый

10

1) Вдоль волокон

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Источники

  • https://prompriem.ru/stati/klass-prochnosti-boltov.html
  • https://pkmetiz.ru/articles/markirovka-klassa-prochnosti-bolty-i-gajki/
  • https://avto-bolt.ru/klassy-prochnosti-krepezha/
  • https://psktitan.ru/40-klassy-prochnosti-i-kategorija-kachestva-po-hladostojkosti.html
  • https://umz-ekb.ru/klassy-prochnosti-krepezha/
  • https://stankiexpert.ru/spravochnik/materialovedenie/predel-prochnosti-stali.html
  • https://crast.ru/instrumenty/v-chem-izmerjaetsja-prochnost-na-razryv
  • https://www.flarm-spb.ru/produkcija/krepezh_flancevyi/bolty_gost_7796-70_7798-70/
  • https://www.rocta.ru/info/predel-prochnosti-materialov-razryv-metallov-pri-rastyazhenii-i-szhatii-chto-ehto-takoe-vidy-foto/
  • https://infotables.ru/fizika/298-plotnost-materialov-na-razryv-ili-napryazhenie-pri-razryve-tablitsa

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все о стройке и ремонте
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: